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Questions for Planning & 
Economics 
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1. Does deterministic analysis capture the value 
in μGrids? 

2. Do deterministic assumption sets exist? 
3. How does the analyst search for non-intuitive 

worst case conditions? 
4. How to perform cascade failure analysis in 

large state spaces? 
5. What is the impact of coupling at longer & 

more diverse time scales? 
 

Questions: Is deterministic analysis 
sufficient for μGrid planning and design? 
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• Integrating high(er) penetration renewables 
• Aggregating smaller DG sources 
• Improving power quality 
• Providing emergency power 
• … 

μGrid Value: 

Do current analysis techniques 
correctly capture value of 
μGrids ? 
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Example 1: Stochastic Planning & Value 
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Irreconcilable Differences? 

“Give me a few 
big things I 
can control 
directly” 

“Give me a 
thousand small 
things I 
understand 
stochastically” 

Mr. Old Grid Mr. New Grid 

Viewpoint: Deterministic Stochastic 

Practice: Stochastic Stochastic 
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Renewable Variability 
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Forecast Accuracy 

Power 

Energy 

• Statistics calculated at 1 Hz, one year at a time, one trial only 
• Forecasts are hourly total production forecasts 
• Imperfect forecast: σ = 10% of rated power 
• Threshold set to 1% & 99% 
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Pow er Deviation Perfect
0.010:   -24.0 MW (-17.14%)
0.010:    22.0 MW ( 15.71%)
Pow er Deviation Imperfect
0.010:   -40.0 MW (-28.57%)
0.010:    36.0 MW ( 25.71%)
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Energy Deviation Perfect
0.010:    -7.0 MWh ( -5.00%)
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Thinking of Loads ... 

2000 3000 4000 5000 6000 7000
0

5

10

15

20

25

30

35

40

Maximum Daily Load (kW)

Fr
eq

ue
nc

y 
(d

ay
s)

Frequency of Given Maximum Daily Load

 

 

4560 kW

3200 kW

-0.2 -0.1 0 0.1 0.2 0.3

0

0.2

0.4

0.6

0.8

1

Proportional Load Step (kW/kW)

C
um

m
ul

at
iv

e 
P

ro
ba

bi
lit

y 
(-)

Probability of Propotional Load Step in 15 Minutes

 

 

Proability
 1%    -0.05
99%     0.05
Max Down    -0.15
Max Up       0.20
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Questions for Island Systems 
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1. How well do classic power system modeling 
approaches handle island system behaviors? 

2. Do classic tools make incorrect assumptions 
for island systems? 

3. Are machines and loads modeled correctly for 
island systems? 

4. Do coupled power and communications 
systems have a material impact on 
operations? 

 
 

Questions for Island Systems: 
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Example 1: Transient versus Disturbance 



Classic, Symmetrical Fault Transient 

Picture from: 

Gleb V. Tcheslavski 

Lamar University 
10s of cycles 
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Similar Question … Islanded System 
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• 6 MW μGrid Powered by 3 Ganged Diesels 
• Response to Added 2.2 MW of Load 

>200 cycles 
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Must also Consider Supervisory Control 
Timeframes 
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• Classic Power Sys. 
− Load Flow 
− Fault studies 
− Protection 

coordination 
 

Contrast: 
• Island Systems 

− Load flow 
− Fault studies 
− Protection 

coordination 
− Disturbance response 
− Supervisory control 

behavior 
− Communication 

latency studies 

Steady State 

Transients 
10s cycles 

Control & Communication 
100s of cycles 

Infinite Bus Finite Bus 
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• Detailed Models in Longer Events 
− Transients   Disturbances  Unit dispatch 

• Coupling between Distant Events 
− Storage integration – seconds to days 

• Coupling between Disparate Systems 
− Power Systems  Controls  Communication 

Pathways  Congestion  Latency  Controls  
Power System 

Current μGrid simulation research: 
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Example 2: The Fixed-Frequency 
Assumption 
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An Annoying Little Example: 
Fixed-Frequency Trap 
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A Little Deeper 
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• Frequency = 59.9 Hz  
− … 0.17% Frequency Deviation 

• Phase Angle: Constant 
• Plot Is …. ? 

 

A “Can’t Get Any Simpler Than This” Test 
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Actual Results 
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Is Dan Nuts? 
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The “infinite bus” and “fixed frequency” mindset 
pervades tools 
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Example 3: Prime Mover Models 
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Classic Prime Mover Model 
 Emergency Diesel-Generator and Asynchronous Motor
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Call me a Skeptic … but … 
• The Real 

Thing 
 
 
 

• The Model 
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Computational Questions 
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1. How can μGrid analysis exploit HPC 
computational capabilities? 

2. What mechanisms are required to validate 
load, machine and prime mover models? 

3. The nasty controls question: How do 
proprietary controls with custom settings 
impact analysis & performance? 

4. Can computational horsepower automate 
μGrid planning, design and operation? 

5. What is the role of visualization in μGrids? 

Computational Questions 
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Computationally Speaking … 

Big Set 
of 

Matrix 
Equation

s 

Vector 
Reduction 

Set of 
Results 

Visualizati
on 

Bang-up Match for vector processors 
… not so good for cluster servers 
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Current Cluster Approach 

Partial 
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• Significant Computation Challenge on Tightly 
Coupled Sub-Systems 
 

• “Loose Coupling” Techniques Introduce Artificial 
Behaviors 
 

• “Tight Coupling” Bogs Down Cluster 
Computation 
 

• Computation Challenges Exactly When 
Computation Requirements Increasing 

The “Catch” with Many Smart Grid 
Models 
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Photos From: Ben Kroposiki, NREL; Bill Kramer, NREL, m-me  
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Thank You 
 
Daniel Zimmerle 
dan.zimmerle@colostate.edu  
970-581-9945 

mailto:dan.zimmerle@colostate.edu
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